Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 222(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36520419

RESUMO

α-Catenin couples the cadherin-catenin complex to the actin cytoskeleton. The mechanosensitive α-Catenin M region undergoes conformational changes upon application of force to recruit interaction partners. Here, we took advantage of the tension landscape in the Drosophila embryo to define three different states of α-Catenin mechanosensing in support of cell adhesion. Low-, medium-, and high-tension contacts showed a corresponding recruitment of Vinculin and Ajuba, which was dependent on the α-Catenin M region. In contrast, the Afadin homolog Canoe acts in parallel to α-Catenin at bicellular low- and medium-tension junctions but requires an interaction with α-Catenin for its tension-sensitive enrichment at high-tension tricellular junctions. Individual M region domains make complex contributions to cell adhesion through their impact on interaction partner recruitment, and redundancies with the function of Canoe. Our data argue that α-Catenin and its interaction partners are part of a cooperative and partially redundant mechanoresponsive network that supports AJs remodeling during morphogenesis.


Assuntos
Adesão Celular , Proteínas de Drosophila , alfa Catenina , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Junções Aderentes/metabolismo , alfa Catenina/genética , alfa Catenina/metabolismo , Caderinas/genética , Caderinas/metabolismo , Morfogênese , Vinculina/genética , Vinculina/metabolismo , Drosophila , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
2.
J Cell Biol ; 221(7)2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35588693

RESUMO

Epithelial cells often leave their tissue context and ingress to form new cell types or acquire migratory ability to move to distant sites during development and tumor progression. Cells lose their apical membrane and epithelial adherens junctions during ingression. However, how factors that organize apical-basal polarity contribute to ingression is unknown. Here, we show that the dynamic regulation of the apical Crumbs polarity complex is crucial for normal neural stem cell ingression. Crumbs endocytosis and recycling allow ingression to occur in a normal timeframe. During early ingression, Crumbs and its complex partner the RhoGEF Cysts support myosin and apical constriction to ensure robust ingression dynamics. During late ingression, the E3-ubiquitin ligase Neuralized facilitates the disassembly of the Crumbs complex and the rapid endocytic removal of the apical cell domain. Our findings reveal a mechanism integrating cell fate, apical polarity, endocytosis, vesicle trafficking, and actomyosin contractility to promote cell ingression, a fundamental morphogenetic process observed in animal development and cancer.


Assuntos
Membrana Celular , Proteínas de Drosophila , Células Epiteliais , Proteínas de Membrana , Células-Tronco Neurais , Junções Aderentes/metabolismo , Animais , Membrana Celular/metabolismo , Polaridade Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células Epiteliais/citologia , Proteínas de Membrana/metabolismo , Morfogênese/fisiologia , Células-Tronco Neurais/citologia , Ubiquitina-Proteína Ligases/metabolismo
3.
Elife ; 92020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286230

RESUMO

Retromer, including Vps35, Vps26, and Vps29, is a protein complex responsible for recycling proteins within the endolysosomal pathway. Although implicated in both Parkinson's and Alzheimer's disease, our understanding of retromer function in the adult brain remains limited, in part because Vps35 and Vps26 are essential for development. In Drosophila, we find that Vps29 is dispensable for embryogenesis but required for retromer function in aging adults, including for synaptic transmission, survival, and locomotion. Unexpectedly, in Vps29 mutants, Vps35 and Vps26 proteins are normally expressed and associated, but retromer is mislocalized from neuropil to soma with the Rab7 GTPase. Further, Vps29 phenotypes are suppressed by reducing Rab7 or overexpressing the GTPase activating protein, TBC1D5. With aging, retromer insufficiency triggers progressive endolysosomal dysfunction, with ultrastructural evidence of impaired substrate clearance and lysosomal stress. Our results reveal the role of Vps29 in retromer localization and function, highlighting requirements for brain homeostasis in aging.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Endossomos/metabolismo , Lisossomos/metabolismo , Transmissão Sináptica/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Animais , Drosophila , Proteínas de Drosophila/metabolismo
4.
PLoS Genet ; 15(11): e1008454, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31697683

RESUMO

α-catenin is a key protein of adherens junctions (AJs) with mechanosensory properties. It also acts as a tumor suppressor that limits tissue growth. Here we analyzed the function of Drosophila α-Catenin (α-Cat) in growth regulation of the wing epithelium. We found that different α-Cat levels led to a differential activation of Hippo/Yorkie or JNK signaling causing tissue overgrowth or degeneration, respectively. α-Cat can modulate Yorkie-dependent tissue growth through recruitment of Ajuba, a negative regulator of Hippo signaling to AJs but also through a mechanism independent of Ajuba recruitment to AJs. Both mechanosensory regions of α-Cat, the M region and the actin-binding domain (ABD), contribute to growth regulation. Whereas M is dispensable for α-Cat function in the wing, individual M domains (M1, M2, M3) have opposing effects on growth regulation. In particular, M1 limits Ajuba recruitment. Loss of M1 causes Ajuba hyper-recruitment to AJs, promoting tissue-tension independent overgrowth. Although M1 binds Vinculin, Vinculin is not responsible for this effect. Moreover, disruption of mechanosensing of the α-Cat ABD affects tissue growth, with enhanced actin interactions stabilizing junctions and leading to tissue overgrowth. Together, our findings indicate that α-Cat acts through multiple mechanisms to control tissue growth, including regulation of AJ stability, mechanosensitive Ajuba recruitment, and dynamic direct F-actin interactions.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas com Domínio LIM/genética , Asas de Animais/crescimento & desenvolvimento , alfa Catenina/genética , Citoesqueleto de Actina/genética , Actinas/genética , Junções Aderentes/genética , Animais , Morte Celular/genética , Citoesqueleto/genética , Drosophila melanogaster/crescimento & desenvolvimento , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Sistema de Sinalização das MAP Quinases/genética , Mecanotransdução Celular/genética , Proteínas Nucleares/genética , Domínios Proteicos/genética , Proteínas Serina-Treonina Quinases/genética , Transativadores/genética , Vinculina/genética , Asas de Animais/metabolismo , Proteínas de Sinalização YAP
5.
G3 (Bethesda) ; 9(12): 4007-4017, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31649044

RESUMO

Drosophila melanogaster photoreceptor cells are highly polarized epithelial cells. Their apical membrane is further subdivided into the stalk membrane and the light-sensing rhabdomere. The photo-pigment Rhodopsin1 (Rh1) localizes to the rhabdomere, whereas the apical determinant Crumbs (Crb) is enriched at the stalk membrane. The proteoglycan Eyes shut (Eys) is secreted through the apical membrane into an inter-rhabdomeral space. Rh1, Crb, and Eys are essential for the development of photoreceptor cells, normal vision, and photoreceptor cell survival. Human orthologs of all three proteins have been linked to retinal degenerative diseases. Here, we describe an RNAi-based screen examining the importance of 237 trafficking-related genes in apical trafficking of Eys, Rh1, and Crb. We found 28 genes that have an effect on the localization and/or levels of these apical proteins and analyzed several factors in more detail. We show that the Arf GEF protein Sec71 is required for biosynthetic traffic of both apical and basolateral proteins, that the exocyst complex and the microtubule-based motor proteins dynein and kinesin promote the secretion of Eys and Rh1, and that Syntaxin 7/Avalanche controls the endocytosis of Rh1, Eys, and Crb.


Assuntos
Polaridade Celular/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Genes de Insetos , Células Fotorreceptoras de Invertebrados/citologia , Animais , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/ultraestrutura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/ultraestrutura , Endocitose , Exocitose , Microtúbulos/metabolismo , Células Fotorreceptoras de Invertebrados/ultraestrutura , Biossíntese de Proteínas , Transporte Proteico , Interferência de RNA
6.
J Cell Biol ; 218(10): 3397-3414, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31409654

RESUMO

The spatio-temporal regulation of small Rho GTPases is crucial for the dynamic stability of epithelial tissues. However, how RhoGTPase activity is controlled during development remains largely unknown. To explore the regulation of Rho GTPases in vivo, we analyzed the Rho GTPase guanine nucleotide exchange factor (RhoGEF) Cysts, the Drosophila orthologue of mammalian p114RhoGEF, GEF-H1, p190RhoGEF, and AKAP-13. Loss of Cysts causes a phenotype that closely resembles the mutant phenotype of the apical polarity regulator Crumbs. This phenotype can be suppressed by the loss of basolateral polarity proteins, suggesting that Cysts is an integral component of the apical polarity protein network. We demonstrate that Cysts is recruited to the apico-lateral membrane through interactions with the Crumbs complex and Bazooka/Par3. Cysts activates Rho1 at adherens junctions and stabilizes junctional myosin. Junctional myosin depletion is similar in Cysts- and Crumbs-compromised embryos. Together, our findings indicate that Cysts is a downstream effector of the Crumbs complex and links apical polarity proteins to Rho1 and myosin activation at adherens junctions, supporting junctional integrity and epithelial polarity.


Assuntos
Junções Aderentes/metabolismo , Polaridade Celular , Proteínas de Drosophila/metabolismo , Miosinas/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Animais , Células Cultivadas , Drosophila , Feminino , Células HEK293 , Células HeLa , Humanos
7.
Nat Commun ; 9(1): 5121, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504777

RESUMO

α-catenin is a key mechanosensor that forms force-dependent interactions with F-actin, thereby coupling the cadherin-catenin complex to the actin cytoskeleton at adherens junctions (AJs). However, the molecular mechanisms by which α-catenin engages F-actin under tension remained elusive. Here we show that the α1-helix of the α-catenin actin-binding domain (αcat-ABD) is a mechanosensing motif that regulates tension-dependent F-actin binding and bundling. αcat-ABD containing an α1-helix-unfolding mutation (H1) shows enhanced binding to F-actin in vitro. Although full-length α-catenin-H1 can generate epithelial monolayers that resist mechanical disruption, it fails to support normal AJ regulation in vivo. Structural and simulation analyses suggest that α1-helix allosterically controls the actin-binding residue V796 dynamics. Crystal structures of αcat-ABD-H1 homodimer suggest that α-catenin can facilitate actin bundling while it remains bound to E-cadherin. We propose that force-dependent allosteric regulation of αcat-ABD promotes dynamic interactions with F-actin involved in actin bundling, cadherin clustering, and AJ remodeling during tissue morphogenesis.


Assuntos
Junções Aderentes/metabolismo , alfa Catenina/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Animais , Caderinas/química , Caderinas/metabolismo , Humanos , Estrutura Secundária de Proteína , alfa Catenina/química
8.
J Cell Sci ; 130(13): 2147-2158, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28515229

RESUMO

Mutations in human crumbs 1 (CRB1) are a major cause of retinal diseases that lead to blindness. CRB1 is a transmembrane protein found in the inner segment of photoreceptor cells (PRCs) and the apical membrane of Müller glia. The function of the extracellular region of CRB1 is poorly understood, although more than 80 disease-causing missense mutations have been mapped to it. We have recreated four of these mutations, affecting different extracellular domains, in Drosophila Crumbs (Crb). Crb regulates epithelial polarity and growth, and contributes to PRC differentiation and survival. The mutant Crb isoforms showed a remarkable diversity in protein abundance, subcellular distribution and ability to rescue the lack of endogenous Crb, elicit a gain-of-function phenotype or promote PRC degeneration. Interestingly, although expression of mutant isoforms led to a substantial rescue of the developmental defects seen in crb mutants, they accelerated PRC degeneration compared to that seen in retinas that lacked Crb, indicating that the function of Crb in cellular differentiation and cell survival depends on distinct molecular pathways. Several Crb mutant proteins accumulated abnormally in the rhabdomere and affected rhodopsin trafficking, suggesting that abnormal rhodopsin physiology contributes to Crb/CRB1-associated retinal degeneration.


Assuntos
Proteínas de Drosophila/genética , Proteínas do Olho/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Degeneração Retiniana/genética , Doenças Retinianas/genética , Animais , Polaridade Celular/genética , Análise Mutacional de DNA , Drosophila melanogaster/genética , Células Ependimogliais/metabolismo , Células Ependimogliais/patologia , Predisposição Genética para Doença , Humanos , Morfogênese/genética , Mutação de Sentido Incorreto/genética , Degeneração Retiniana/patologia , Doenças Retinianas/patologia , Rodopsina/genética , Rodopsina/metabolismo
9.
J Cell Biol ; 216(5): 1387-1404, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28363972

RESUMO

Epithelial-mesenchymal transitions play key roles in development and cancer and entail the loss of epithelial polarity and cell adhesion. In this study, we use quantitative live imaging of ingressing neuroblasts (NBs) in Drosophila melanogaster embryos to assess apical domain loss and junctional disassembly. Ingression is independent of the Snail family of transcriptional repressors and down-regulation of Drosophila E-cadherin (DEcad) transcription. Instead, the posttranscriptionally regulated decrease in DEcad coincides with the reduction of cell contact length and depends on tension anisotropy between NBs and their neighbors. A major driver of apical constriction and junctional disassembly are periodic pulses of junctional and medial myosin II that result in progressively stronger cortical contractions during ingression. Effective contractions require the molecular coupling between myosin and junctions and apical relaxation of neighboring cells. Moreover, planar polarization of myosin leads to the loss of anterior-posterior junctions before the loss of dorsal-ventral junctions. We conclude that planar-polarized dynamic actomyosin networks drive apical constriction and the anisotropic loss of cell contacts during NB ingression.


Assuntos
Miosina Tipo II/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Animais , Anisotropia , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia
10.
J Cell Biol ; 212(2): 139-41, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26754649

RESUMO

Epithelial-mesenchymal transitions (EMTs) are often governed by the transcription factor Snail and entail the loss of apical junctions from epithelial cells. In this issue, Weng and Wieschaus (2016. J Cell Biol. http://dx.doi.org/10.1083/jcb.201508056) report that actomyosin contractility can strengthen junctions to override Snail-dependent junctional disassembly and postpone EMT during Drosophila melanogaster gastrulation.


Assuntos
Junções Aderentes/fisiologia , Proteínas de Drosophila/fisiologia , Transição Epitelial-Mesenquimal , Gastrulação , Miosina Tipo II/fisiologia , Fatores de Transcrição/fisiologia , Animais , Feminino , Masculino
11.
Development ; 142(10): 1777-84, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25968313

RESUMO

E-cadherin-mediated cell-cell adhesion is fundamental for epithelial tissue morphogenesis, physiology and repair. E-cadherin is a core transmembrane constituent of the zonula adherens (ZA), a belt-like adherens junction located at the apicolateral border in epithelial cells. The anchorage of ZA components to cortical actin filaments strengthens cell-cell cohesion and allows for junction contractility, which shapes epithelial tissues during development. Here, we report that the cytoskeletal adaptor protein Girdin physically and functionally interacts with components of the cadherin-catenin complex during Drosophila embryogenesis. Fly Girdin is broadly expressed throughout embryonic development and enriched at the ZA in epithelial tissues. Girdin associates with the cytoskeleton and co-precipitates with the cadherin-catenin complex protein α-Catenin (α-Cat). Girdin mutations strongly enhance adhesion defects associated with reduced DE-cadherin (DE-Cad) expression. Moreover, the fraction of DE-Cad molecules associated with the cytoskeleton decreases in the absence of Girdin, thereby identifying Girdin as a positive regulator of adherens junction function. Girdin mutant embryos display isolated epithelial cell cysts and rupture of the ventral midline, consistent with defects in cell-cell cohesion. In addition, loss of Girdin impairs the collective migration of epithelial cells, resulting in dorsal closure defects. We propose that Girdin stabilizes epithelial cell adhesion and promotes morphogenesis by regulating the linkage of the cadherin-catenin complex to the cytoskeleton.


Assuntos
Caderinas/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Proteínas do Citoesqueleto/metabolismo , Drosophila , Proteínas de Drosophila/metabolismo , Morfogênese/fisiologia
12.
J Cell Sci ; 128(6): 1150-65, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25653389

RESUMO

The cadherin-catenin adhesion complex is a key contributor to epithelial tissue stability and dynamic cell movements during development and tissue renewal. How this complex is regulated to accomplish these functions is not fully understood. We identified several phosphorylation sites in mammalian αE-catenin (also known as catenin α-1) and Drosophila α-Catenin within a flexible linker located between the middle (M)-region and the carboxy-terminal actin-binding domain. We show that this phospho-linker (P-linker) is the main phosphorylated region of α-catenin in cells and is sequentially modified at casein kinase 2 and 1 consensus sites. In Drosophila, the P-linker is required for normal α-catenin function during development and collective cell migration, although no obvious defects were found in cadherin-catenin complex assembly or adherens junction formation. In mammalian cells, non-phosphorylatable forms of α-catenin showed defects in intercellular adhesion using a mechanical dispersion assay. Epithelial sheets expressing phosphomimetic forms of α-catenin showed faster and more coordinated migrations after scratch wounding. These findings suggest that phosphorylation and dephosphorylation of the α-catenin P-linker are required for normal cadherin-catenin complex function in Drosophila and mammalian cells.


Assuntos
Caderinas/metabolismo , Caseína Quinase II/metabolismo , Caseína Quinase I/metabolismo , Adesão Celular , Drosophila melanogaster/metabolismo , alfa Catenina/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Apoptose , Western Blotting , Caderinas/genética , Caseína Quinase I/genética , Caseína Quinase II/genética , Membrana Celular/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Cães , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Imunofluorescência , Humanos , Imunoprecipitação , Células Madin Darby de Rim Canino , Dados de Sequência Molecular , Ovário/citologia , Ovário/metabolismo , Fosforilação , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , alfa Catenina/química , alfa Catenina/genética
14.
Nat Cell Biol ; 15(3): 261-73, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23417122

RESUMO

The linkage of adherens junctions to the actin cytoskeleton is essential for cell adhesion. The contribution of the cadherin-catenin complex to the interaction between actin and the adherens junction remains an intensely investigated subject that centres on the function of α-catenin, which binds to cadherin through ß-catenin and can bind F-actin directly or indirectly. Here, we delineate regions within Drosophila α-Catenin (α-Cat) that are important for adherens junction performance in static epithelia and dynamic morphogenetic processes. Moreover, we address whether persistent α-catenin-mediated physical linkage between cadherin and F-actin is crucial for cell adhesion and characterize the functions of α-catenin monomers and dimers at adherens junctions. Our data support the view that monomeric α-catenin acts as an essential physical linker between the cadherin-ß-catenin complex and the actin cytoskeleton, whereas α-catenin dimers are cytoplasmic and form an equilibrium with monomeric junctional α-catenin.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Caderinas/metabolismo , Adesão Celular/fisiologia , Drosophila melanogaster/metabolismo , alfa Catenina/metabolismo , beta Catenina/metabolismo , Citoesqueleto de Actina/genética , Actinas/genética , Junções Aderentes/fisiologia , Regulação Alostérica , Animais , Caderinas/genética , Membrana Celular/metabolismo , Células Cultivadas , Citoplasma/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Epitélio/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Processamento de Imagem Assistida por Computador , Immunoblotting , Técnicas Imunoenzimáticas , Imunoprecipitação , Mutação/genética , Multimerização Proteica , alfa Catenina/genética , beta Catenina/genética
15.
Annu Rev Cell Dev Biol ; 28: 655-85, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22881460

RESUMO

Epithelial tissue formation and function requires the apical-basal polarization of individual epithelial cells. Apical polarity regulators (APRs) are an evolutionarily conserved group of key factors that govern polarity and several other aspects of epithelial differentiation. APRs compose a diverse set of molecules including a transmembrane protein (Crumbs), a serine/threonine kinase (aPKC), a lipid phosphatase (PTEN), a small GTPase (Cdc42), FERM domain proteins (Moesin, Yurt), and several adaptor or scaffolding proteins (Bazooka/Par3, Par6, Stardust, Patj). These proteins form a dynamic cooperative network that is engaged in negative-feedback regulation with basolateral polarity factors to set up the epithelial apical-basal axis. APRs support the formation of the apical junctional complex and the segregation of the junctional domain from the apical membrane. It is becoming increasingly clear that APRs interact with the cytoskeleton and vesicle trafficking machinery, regulate morphogenesis, and modulate epithelial cell growth and survival. Not surprisingly, APRs have multiple fundamental links to human diseases such as cancer and blindness.


Assuntos
Polaridade Celular , Proteínas de Drosophila/metabolismo , Drosophila/citologia , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Sequência de Aminoácidos , Animais , Proliferação de Células , Sobrevivência Celular , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Retroalimentação Fisiológica , Humanos , Junções Intercelulares/metabolismo , Dados de Sequência Molecular , Morfogênese
16.
J Cell Sci ; 125(Pt 1): 233-45, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22266901

RESUMO

α-catenin associates the cadherin-catenin complex with the actin cytoskeleton. α-catenin binds to ß-catenin, which links it to the cadherin cytoplasmic tail, and F-actin, but also to a multitude of actin-associated proteins. These interactions suggest a highly complex cadherin-actin interface. Moreover, mammalian αE-catenin has been implicated in a cadherin-independent cytoplasmic function in Arp2/3-dependent actin regulation, and in cell signaling. The function and regulation of individual molecular interactions of α-catenin, in particular during development, are not well understood. We have generated mutations in Drosophila α-Catenin (α-Cat) to investigate α-Catenin function in this model, and to establish a setup for testing α-Catenin-related constructs in α-Cat-null mutant cells in vivo. Our analysis of α-Cat mutants in embryogenesis, imaginal discs and oogenesis reveals defects consistent with a loss of cadherin function. Compromising components of the Arp2/3 complex or its regulator SCAR ameliorate the α-Cat loss-of-function phenotype in embryos but not in ovaries, suggesting negative regulatory interactions between α-Catenin and the Arp2/3 complex in some tissues. We also show that the α-Cat mutant phenotype can be rescued by the expression of a DE-cadherin::α-Catenin fusion protein, which argues against an essential cytosolic, cadherin-independent role of Drosophila α-Catenin.


Assuntos
Junções Aderentes/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Deleção de Genes , alfa Catenina/genética , alfa Catenina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Junções Aderentes/genética , Animais , Proteínas do Domínio Armadillo/genética , Proteínas do Domínio Armadillo/metabolismo , Caderinas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Embrião não Mamífero/citologia , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Cabeça/crescimento & desenvolvimento , Discos Imaginais/metabolismo , Larva/crescimento & desenvolvimento , Masculino , Mutagênese , Oogênese/genética , Folículo Ovariano/citologia , Folículo Ovariano/metabolismo , Fenótipo , Espectrina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zigoto/metabolismo , alfa Catenina/deficiência
17.
Trends Cell Biol ; 21(7): 401-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21530265

RESUMO

Apical-basal polarity is a basic organizing principle of epithelial cells. Consequently, defects in polarity are associated with numerous human pathologies, including many forms of cancer. Recent work in Drosophila has identified novel roles for, or has greatly enhanced our understanding of, functional modules within the epithelial polarity network. A series of recent papers have highlighted the key function of the scaffolding protein Bazooka/Par3 as an early polarity landmark, and its crucial role in dynamic segregation of the apical membrane from the adherens junction. Moreover, novel polarity modules have recently been discovered; the Yurt/Coracle group supports the basolateral membrane during a defined time window of development, while a second module, including the kinases LKB1 and AMP-activated protein kinase, is required for polarity when epithelial cells experience metabolic stress. These new findings emphasize unforeseen complexities in the regulation of epithelial polarity, and raise new questions about the mechanisms of epithelial tissue organization and function.


Assuntos
Polaridade Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Células Epiteliais/metabolismo , Animais , Células Epiteliais/citologia
18.
Traffic ; 11(10): 1272-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20633244

RESUMO

Cdc42, a highly conserved small GTPase of the Rho family, acts as a molecular switch to modulate a wide range of signaling pathways. Vesicle trafficking and cell polarity are two processes Cdc42 is known to regulate. Although the trafficking and polarity machineries are each well understood, how they interact to cross-regulate each other in cell polarization is still a mystery. Cdc42 is an interesting candidate that may integrate these two networks within the cell. Here we review findings on the interplay between Cdc42 and trafficking in yeast, Caenorhabditis elegans, Drosophila and mammalian cell culture systems, and discuss recent advances in our understanding of the function of Cdc42 and two of its effectors, the WASp-Arp2/3 and Par complexes, in regulating polarized traffic. Work in yeast suggests that the polarized distribution of Cdc42, which acts here as a key polarity determinant, requires input from multiple processes including endocytosis and recycling. In metazoan cells, Cdc42 can regulate several steps in the biosynthetic as well as endocytotic and recycling pathways. The recent discovery that the Par polarity complex co-operates with Cdc42 in the regulation of endocytosis and recycling opens exciting possibilities for the integration of polarity protein function and endocytotic machinery.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Polaridade Celular , Proteínas de Drosophila/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Vesículas Secretórias/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Células Cultivadas , Drosophila/embriologia , Drosophila/metabolismo , Endocitose , Complexo de Golgi/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
19.
Nat Rev Mol Cell Biol ; 11(7): 502-14, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20571587

RESUMO

How adhesive interactions between cells generate and maintain animal tissue structure remains one of the most challenging and long-standing questions in cell and developmental biology. Adherens junctions (AJs) and the cadherin-catenin complexes at their core are therefore the subjects of intense research. Recent work has greatly advanced our understanding of the molecular organization of AJs and how cadherin-catenin complexes engage actin, microtubules and the endocytic machinery. As a result, we have gained important insights into the molecular mechanisms of tissue morphogenesis.


Assuntos
Junções Aderentes/metabolismo , Morfogênese/fisiologia , Actinas/genética , Actinas/metabolismo , Junções Aderentes/genética , Animais , Caderinas/genética , Caderinas/metabolismo , Cateninas/genética , Cateninas/metabolismo , Humanos , Microtúbulos/genética , Microtúbulos/metabolismo , Modelos Biológicos , Morfogênese/genética
20.
Curr Biol ; 20(1): 55-61, 2010 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-20022244

RESUMO

Regulation of epithelial tube size is critical for organ function. However, the mechanisms of tube size control remain poorly understood. In the Drosophila trachea, tube dimensions are regulated by a luminal extracellular matrix (ECM). ECM organization requires apical (luminal) secretion of the protein Vermiform (Verm), which depends on the basolateral septate junction (SJ). Here, we show that apical and basolateral epithelial polarity proteins interact to control tracheal tube size independently of the Verm pathway. Mutations in yurt (yrt) and scribble (scrib), which encode SJ-associated polarity proteins, cause an expansion of tracheal tubes but do not disrupt Verm secretion. Reducing activity of the apical polarity protein Crumbs (Crb) suppresses the length defects in yrt but not scrib mutants, suggesting that Yrt acts by negatively regulating Crb. Conversely, Crb overexpression increases tracheal tube dimensions. Reducing crb dosage also rescues tracheal size defects caused by mutations in coracle (cora), which encodes an SJ-associated polarity protein. In addition, crb mutations suppress cora length defects without restoring Verm secretion. Together, these data indicate that Yrt, Cora, Crb, and Scrib operate independently of the Verm pathway. Our data support a model in which Cora and Yrt act through Crb to regulate epithelial tube size.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/embriologia , Drosophila/fisiologia , Traqueia/embriologia , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Padronização Corporal/fisiologia , Drosophila/genética , Proteínas de Drosophila/genética , Matriz Extracelular/fisiologia , Genes de Insetos , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Modelos Biológicos , Mutação , Tamanho do Órgão , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...